The Use of Sawn Timber for Barrel Production from Oak Wood (Quercus Petraea L.)

PhD.C. Muharrem Sejdiu
Agricultural University, Tirana, Albania
Prof. Dr. Pandeli Marku
Agricultural University, Tirana, Albania
Prof. Ass. Dr. Rrahim Sejdiu
University of Pristina, Pristina, Kosovo

Abstract
The number of firms involved in the production of barrels from white oak (quercus petraea L.) is small. The production of wood barrels is quite complex and with a low exploitation coefficient. We think it is in the interests of firms to know how much the coefficient of use of sawn material for these types of products is. For the study we have chosen the firm "Beha-N" in Rahovec, which mainly deals with the production of oak wood barrels. The sawn material taken in the study was of good quality. To do the tests we used weighing methods, as its volume was difficult to measure since it was half milled. Tests were conducted for the production of barrel details with a volume of 50, 30 and 20 litters, which are most widely used by the customers. For the realization used by the firm were taken into account the dimensions and technology. From the measurement data it turned out that the weight of the sawn timber was about 250kg. The results of these weights were exchanged in volume and percentage and they are shown in final results.

Keywords: exploitation coefficient, plank, wood pieces, sawdust, barrel

1. Introduction
Barrels were first used for wine by the Romans. They were a big improvement over amphorae (Greek) and goat skins, can be built without metal using pegs and split willow hoops (Barrels & Ageing, 2014). Traditionally, there are three species of wood used in barrel making: Q. petraea Liebl. and Q. robur L., the most common oak species in French forests, and the American oak Q. alba L. (Mariana Tavares, António M. Jordão and Jorge M. Ricardo-da-Silva, 2017).

In our country there are few companies that produce oak barrels (quercus petraea L.). But since it is a complicated work and with a small use of wood, we thought it was of interest to see how much it is used.

The production of barrels from wood is not only an interest in the preservation of wine, cognac and other alcoholic drinks, but it is also important for the fact that the physiological process that occurs due to the passage of oxygen into the air through the stave of barrel directly affects the formation and improves the quality of wine. Storing wine, cognac and other alcoholic drinks in barrels for a long time they become delicious, aromatic and clear. This is also the main reason why these products are stored in wooden barrels.

The study was done at "Beha-N" Company in Rahovec which deals with the production of wooden barrels. It produces barrels of various volumes where the most common are barrels 50, 30, 20 litters (figure 1).

Figure 1. Barrel
2. Study aim

The purpose of this study is to see the percentage of sawdust used for the production of oak wood barrels (Quercus petraea L.) and how much is the waste in wood pieces, shavings and sawdust.

3. Methodology

The sawn timber in this firm is dried naturally for the production of barrels. Sawn bands are dried in 12-16% moisture. The amount of sawdust used is weighed on the scales in kg then the weight is exchanged to m\(^3\). This is because the saw material used in this firm is half milled and it is difficult to draw the correct volume by other methods. In this way the pure stave, wood pieces, shavings and sawdust are measured. In this case specific weight calculation is also required.

3.1 Materials used

- Oak sawn timber with dimensions (31x120-160x1000mm.)
- Wood processing machines as well (saw blade, longitudinal saw, planer machines, milling machine, sanding machine etc.).
- Scale, meters, micrometer, etc.

3.2 Methodology used

Determination of sawn timber use was done by measurements in the field. The following formulas are used for calculations:

The volume of sawn timber in [m\(^3\)] (Ajdinaj D. Marku P., 2014)

\[
V_i = \frac{P_{ni}}{\gamma_w} \quad \text{(m}^3) \quad \text{(1)}
\]

Where:

- \(P_{ni}\) - Weight of sawn timber in kg,
- \(\gamma_w\) - Specific wood weight in kg/m\(^3\).

Net volume of stave [m\(^3\)]

\[
V_d = \frac{P_d}{\gamma_w} \quad \text{(m}^3) \quad \text{(2)}
\]

Where:

- \(P_d\) - Weight of stave in kg,

Net yield stave in [%]

\[
R_s = \frac{V_d}{V_i} \times 100 = \ldots \% \quad \text{(3)}
\]

Net volume of barrel heads [m\(^3\)]

\[
V_f = \frac{P_f}{\gamma_w} \quad \text{(m}^3) \quad \text{(4)}
\]

Where:
\(P_f \) - Net weight of barrel heads in kg,

Net yield of barrel heads [%]

\[
R_f = \frac{V_f}{V_i} \times 100 = \ldots (\%) \ldots \quad (5)
\]

Wood pieces volume \([\text{m}^3]\) (Sejdiu M, 2017)

\[
V_a = \frac{P_a}{\gamma_a} \ldots (\text{m}^3) \quad \ldots \quad (6)
\]

Where:

\(P_a \)-Wood pieces weight in kg.

Yield wood pieces [%]

\[
R_a = \frac{V_a}{V_i} \times 100 = \ldots (\%) \quad \ldots \quad (7)
\]

Sawdust volume in \([\text{m}^3]\) (Ajdinaj D. Marku P., 2014)

\[
V_{se} = \frac{P_{se}}{\gamma_a} \ldots (\text{m}^3) \quad \ldots \quad (8)
\]

Where:

\(P_{se} \)- Sawdust weight in kg.

Sawdust performance in [%]

\[
R_{se} = \frac{V_{se}}{V_i} \times 100 = \ldots (\%) \quad \ldots \quad (9)
\]

To calculate the specific weight, there were taken samples of 2x2x2cm and they were taken at the University of Applied Science Lab in Ferizaj. Samples were weighted on scale 0.1gr. and measured with micrometer 0.01mm (figure 2).

Figure 2. The view of materials and tools during practical examinations.
Then the samples were dried to oven dry moisture (102±3°C). The measurements are given in chart 1.

Chart 1. Sample dimensions, volume, weight and moisture.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Longitudinal mm.</th>
<th>Radial mm.</th>
<th>Tangential mm.</th>
<th>Volume in cm³</th>
<th>Weight of oven dry samples in gr.</th>
<th>Moisture %</th>
<th>Weight of oven dry samples in gr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19,83</td>
<td>18,65</td>
<td>18,65</td>
<td>6,90</td>
<td>5,60</td>
<td>14%</td>
<td>4,90</td>
</tr>
<tr>
<td>2</td>
<td>19,85</td>
<td>18,49</td>
<td>18,56</td>
<td>6,81</td>
<td>5,40</td>
<td>15%</td>
<td>4,70</td>
</tr>
<tr>
<td>3</td>
<td>19,91</td>
<td>18,48</td>
<td>18,69</td>
<td>6,88</td>
<td>5,20</td>
<td>13%</td>
<td>4,60</td>
</tr>
<tr>
<td>4</td>
<td>19,91</td>
<td>18,49</td>
<td>18,61</td>
<td>6,85</td>
<td>5,60</td>
<td>14%</td>
<td>4,90</td>
</tr>
<tr>
<td>5</td>
<td>19,84</td>
<td>18,58</td>
<td>18,59</td>
<td>6,85</td>
<td>5,50</td>
<td>15%</td>
<td>4,80</td>
</tr>
<tr>
<td>6</td>
<td>19,72</td>
<td>18,63</td>
<td>19,10</td>
<td>7,02</td>
<td>5,50</td>
<td>15%</td>
<td>4,80</td>
</tr>
<tr>
<td>7</td>
<td>19,86</td>
<td>18,58</td>
<td>18,59</td>
<td>6,86</td>
<td>5,50</td>
<td>15%</td>
<td>4,80</td>
</tr>
<tr>
<td>8</td>
<td>19,73</td>
<td>18,57</td>
<td>18,51</td>
<td>6,78</td>
<td>5,40</td>
<td>15%</td>
<td>4,70</td>
</tr>
<tr>
<td>9</td>
<td>19,80</td>
<td>18,66</td>
<td>19,10</td>
<td>7,06</td>
<td>5,50</td>
<td>15%</td>
<td>4,80</td>
</tr>
<tr>
<td>10</td>
<td>19,88</td>
<td>18,41</td>
<td>18,40</td>
<td>6,73</td>
<td>5,40</td>
<td>15%</td>
<td>4,70</td>
</tr>
<tr>
<td>11</td>
<td>19,90</td>
<td>18,52</td>
<td>18,72</td>
<td>6,90</td>
<td>5,40</td>
<td>15%</td>
<td>4,70</td>
</tr>
<tr>
<td>12</td>
<td>19,87</td>
<td>18,38</td>
<td>18,57</td>
<td>6,78</td>
<td>5,50</td>
<td>15%</td>
<td>4,80</td>
</tr>
<tr>
<td>13</td>
<td>19,92</td>
<td>18,53</td>
<td>18,61</td>
<td>6,87</td>
<td>5,50</td>
<td>15%</td>
<td>4,80</td>
</tr>
<tr>
<td>14</td>
<td>19,38</td>
<td>18,56</td>
<td>18,61</td>
<td>6,69</td>
<td>5,40</td>
<td>15%</td>
<td>4,70</td>
</tr>
<tr>
<td>15</td>
<td>19,88</td>
<td>18,62</td>
<td>18,67</td>
<td>6,91</td>
<td>5,50</td>
<td>15%</td>
<td>4,80</td>
</tr>
<tr>
<td>16</td>
<td>19,82</td>
<td>18,58</td>
<td>18,52</td>
<td>6,82</td>
<td>5,50</td>
<td>15%</td>
<td>4,80</td>
</tr>
<tr>
<td>17</td>
<td>19,80</td>
<td>18,62</td>
<td>18,67</td>
<td>6,88</td>
<td>5,50</td>
<td>12%</td>
<td>4,90</td>
</tr>
<tr>
<td>18</td>
<td>19,81</td>
<td>18,48</td>
<td>18,51</td>
<td>6,78</td>
<td>5,40</td>
<td>15%</td>
<td>4,70</td>
</tr>
<tr>
<td>19</td>
<td>19,79</td>
<td>18,66</td>
<td>17,65</td>
<td>6,52</td>
<td>5,50</td>
<td>15%</td>
<td>4,80</td>
</tr>
<tr>
<td>20</td>
<td>19,85</td>
<td>18,58</td>
<td>18,64</td>
<td>6,87</td>
<td>5,40</td>
<td>13%</td>
<td>4,80</td>
</tr>
<tr>
<td>21</td>
<td>19,77</td>
<td>18,53</td>
<td>18,64</td>
<td>6,83</td>
<td>5,50</td>
<td>15%</td>
<td>4,80</td>
</tr>
<tr>
<td>22</td>
<td>19,78</td>
<td>18,55</td>
<td>18,68</td>
<td>6,85</td>
<td>5,40</td>
<td>15%</td>
<td>4,70</td>
</tr>
<tr>
<td>23</td>
<td>19,81</td>
<td>18,56</td>
<td>18,84</td>
<td>6,93</td>
<td>5,40</td>
<td>13%</td>
<td>4,80</td>
</tr>
<tr>
<td>24</td>
<td>19,81</td>
<td>18,67</td>
<td>18,68</td>
<td>6,91</td>
<td>5,50</td>
<td>12%</td>
<td>4,90</td>
</tr>
<tr>
<td>25</td>
<td>19,81</td>
<td>18,64</td>
<td>18,73</td>
<td>6,92</td>
<td>5,40</td>
<td>13%</td>
<td>4,80</td>
</tr>
<tr>
<td>26</td>
<td>19,93</td>
<td>18,50</td>
<td>18,63</td>
<td>6,87</td>
<td>5,30</td>
<td>13%</td>
<td>4,70</td>
</tr>
</tbody>
</table>
According to the chart 1, the average moisture of wood was 13.94%, the average volume of samples in this moisture was 6.81 cm³, the average weight of samples 5.61 gr. and the average weight of samples in dry condition 4.92 gr.

Specific wood weight calculation was with the formula (Fico S. Marku P. Shqau I., 1998):

\[\gamma_u = \frac{P_u}{V_u} \quad \text{gr/cm}^3 \quad (10) \]

Where:

- \(P_u \): Sample weight in gr.
- \(V_u \): Sample volume in m³

According to these data we see that 1 cm³ in 13.94% moisture weights 0.824 gr. or 1 m³ is equal to 824 kg.

4. Results

Measurement of sawn timber - The sawn timber in this firm was chosen with small annual rings and large pith wood, as mark is inadequate.

The sawn timber taken in the study weighted 250 kg, and then it was exchanged to m³ by equation 1.

\[V_i = \frac{P_i}{\gamma_u} = \frac{250}{0.3033980} = 824 \quad (m^3) \]

Then the final balance of the use of sawn timber for barrels was finalized. The results are presented in tabular form in chart 2.
Chart 2. Performance in volume and percentage

<table>
<thead>
<tr>
<th></th>
<th>Sawn timber</th>
<th>Clean staves</th>
<th>Clean barrel heads</th>
<th>Wood pieces</th>
<th>Shavings and sawdust</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight kg</td>
<td>250,00</td>
<td>0.303</td>
<td>40.50</td>
<td>14.50</td>
<td>0.138</td>
<td>113.50</td>
</tr>
<tr>
<td>Volume m³</td>
<td>0.049</td>
<td>16.20</td>
<td>0.018</td>
<td>113.50</td>
<td>0.093</td>
<td>0.006</td>
</tr>
<tr>
<td>%</td>
<td>100.00</td>
<td>40.50</td>
<td>14.50</td>
<td>0.138</td>
<td>113.50</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Graphically, the data of chart 2. for percentage are shown in graphic 1.

Graph 1. Efficiency in percentage.

According to the chart it can be seen that the use of sawn timber is very low, about 22%. If we consider the losses of wood during sawing process to make planks and drying boards, then the yield is even lower. This is also, as we said above, for the production of barrels it is used the heartwood.

5. **Conclusion and Recommendation**

For the production of stave barrels it is used only the heartwood.

From the amount of dry sawn timber of 0.3303m³ used for the production of a barrel is:

- Stave takes 16.2%, heads 5.8%.
- Others, like wood pieces (45.4%), sawdust and shavings and others (32.6%), are considered losses.

We recommend that:

- To be careful during the natural drying of planks, in order to minimize damages.
- To be careful during the wood cutting process of planks, in order to make them radial.
- Create mathematical cutting patterns for each type of barrel to achieve maximum utilization of raw material.
- Other wood pieces should be used for other products, as there are huge losses.
Shavings and sawdust should be used for briquette or pellet production or for burning.

References

