
ISSN 2601-8616 (print)
ISSN 2601-8624 (online)

European Journal of
Education

January-April 2020
Volume 3, Issue 1

40

Optimal Solutions to the Sort Algorithms of Database Structure

Rifat Osmanaj

Dr.c , Lecturer, AAB University, Prishtina

Hysen Binjaku

Lecturer, Prof.Asoc. Dr. Europian Universityof Tirana, Tirana

Abstract

Sorting is much used in massive data applications, insurance systems, education, health, business, etc. To the
sorting operation that sorts the data as desired, quick access to the required data is achieved. Typically sorted
data are organized in strings as file elements or tables. The most common case is when the tabular data is
processed in the main memory of the computer. The paper presents the algorithms currently used for sorting
objects that are involved in static and dynamic data structures. Then the selection of the data set on which
particular algorithms will be applied will be made and the advantages and disadvantages of each of the
algorithms in question will be seen.Thereafter, it is determined the efficiency of the sorting algorithm work and it
is considered what is determinative when selecting the appropriate algorithm for sorting.

Keywords: optimal, solutions, algorithms, database, structure

1. Introduction

Solving problems in life, however simple it may be, requires different actions. The set of all sorts of actions with a certain
queue, in solving a problem, is called Algorithm. It is a well-defined calculator procedure that takes some values or values
sets as inputs and outputs value or value sets as outputs.

Thus, an algorithm represents a sequence or sequence of computing steps that convert the entry to exit results.
Sorting represents a fundamental operation in computer science (many programs use it as an intermediate step) and
therefore a large number of sorting algorithms have been developed. The algorithm is correct if, for each incoming instance,
the output is correct or correct.

The sequential list (vector, matrix, or multidimensional field) represents static data structures because their size does not
change during the execution of the program.While linked lists represent dynamic data structures, because the nodes are
set or deleted dynamically during the execution of the program.The number of nodes is likely to increase while there is free
memory on the computer, but can even be reduced.

Algorithms to solve the same problem often change dramatically in their efficiency. Differences in algorithms can be far
greater and more important than differences due to software and hardware. Two kinds of algorithms for sorting, one of the
weakest bubble sort varieties, and the other with very high speed (quick sort) efficiency are used in the paper.

2. BUBBLE SORT

The bubble sort makes the alignment of the string elements in such a way that at first glance impresses for a very fast
method. In fact the bubble sort is one of the simplest methods used in computer science for data sorting.
The algorithm takes its name based on the movement of the smallest element of the "bubble" list to the heading of the list,
similar to the movement of air bubbles in the water.

The bubble sort is an algorithm that works by repeating the steps in the list to be sorted by comparing each pair of the list
and changing the locations of the elements that are not properly sorted.

ISSN 2601-8616 (print)
ISSN 2601-8624 (online)

European Journal of
Education

January-April 2020
Volume 3, Issue 1

41

The bubble sort can, however, be used efficiently to rank the lists on which most of the elements are in the right place (the
lists are almost sorted), unless the number of elements is too small.

For example, if only one element is not listed the bubble variety will take 2n time, if two elements are not sorted the bubble
variety will take time 3n.

In the case of bubble sort avarage case (average) and worst case (the worst case) are: O (n2).

The bubble sort uses only element comparisons and is therefore referred to as a comparator. Also the bubble variety is
stable and adaptive.

Example of bubble sort:

Listing Code:

// Bubble Sort

#include <iostream>

using namespace std;

int compare(int, int);

void sort(int

, const int);

void swap(int *, int *);

int compare(int x, int y)

{

 return(x > y);

}

void swap(int *x, int *y)

{

ISSN 2601-8616 (print)
ISSN 2601-8624 (online)

European Journal of
Education

January-April 2020
Volume 3, Issue 1

42

 int temp;

 temp = *x;

 *x = *y;

 *y = temp;

}

void sort(int table

, const int n)

{

 for(int i = 0; i < n; i++)

 {

 for(int j = 0; j < n-1; j++)

 {

 if(compare(table[j], table[j+1]))

 swap(&table[j], &table[j+1]);

 }

 }

}

int quantity;

int* tab;

int main()

{

cout << "\nNumber of elements: ";

cin >> quantity;

tab = new int [quantity];

cout << "\nLists number: \n\n";

for (int i = 0; i < quantity; i++)

{

 int x = i;

 cout << "Numri " << ++x << ": ";

 cin >> tab[i];

}

cout << "\n\n List before sort: ";

for (int i = 0; i < quantity; i++)

ISSN 2601-8616 (print)
ISSN 2601-8624 (online)

European Journal of
Education

January-April 2020
Volume 3, Issue 1

43

{

 cout << tab[i] << " ";

}

cout << "\n\n List after sort: ";

sort(tab, quantity);

for(int i = 0; i < quantity; i++)

{

 cout << tab[i] << " ";

}

cout<<endl;

cout<<endl;

return 0;

}

2.1.1. Measuring the execution time

The execution time is one of the main tools that determines the functioning of the algorithm.
The execution time of the Bubble Sort algorithm depends on the number of elements in the list: the order of 27777 elements
lasts more than the order of 17777 elements, the execution time in relation to the number of elements of the list is a
quadratic function.

The execution time measurements for the Bubble Sort algorithm are performed on some computers, but in this case, the
results of 3 computers that have different results compared to others will be reviewed.

Computer 1:

After three tests we have the following results:

Number of elements

Computer 1
Time in seconds

Test 1 Test 2 Test 3

10000 0.656 0.703 0.703

15000 1.468 1.484 1.516

25000 4.110 4.157 4.094

30000 5.969 5.953 5.938

45000 13.360 13.437 13.344

50000 16.593 16.469 16.437

60000 24.532 23.656 23.797

75000 37.219 37.125 37.375

ISSN 2601-8616 (print)
ISSN 2601-8624 (online)

European Journal of
Education

January-April 2020
Volume 3, Issue 1

44

90000 53.703 53.828 53.906

100000 66.234 66.125 66.156

Computer 1 tests

For computer features 1 of the empirical results it is seen that there are small differences in the tests 1,2,3

Computer 2:

 After three tests we have the following results:

Number of
elements

Computer 1

Time in seconds

Test 1 Test 2 Test 3

0,000

50,000

100,000

1
0

0
0
0

1
5

0
0
0

2
5

0
0
0

3
0

0
0

4
5

0
0
0

5
0

0
0
0

6
0

0
0
0

7
5

0
0
0

9
0

0
0
0

1
0
0
…

T
im

e
 i

n
 s

ec
o

n
d

s

Number of elements

Testimet me kompjuterin 1

Test 1

Test 2

Test 3

0,000

20,000

40,000

60,000

80,000

1
0

00
0

1
5

00
0

2
5

00
0

3
0

00

4
5

00
0

5
0

00
0

6
0

00
0

7
5

00
0

9
0

00
0

1
0

00
0

0

Ti
m

e
 in

 s
e

co
n

d
s

Number of elements

Testimet me
kompjuterin 2

Test 1

Test 2

Test 3

ISSN 2601-8616 (print)
ISSN 2601-8624 (online)

European Journal of
Education

January-April 2020
Volume 3, Issue 1

45

10000 0.625 0.625 0.688

15000 1.656 1.406 1.422

25000 4.531 4.297 4.078

30000 5.610 5.985 6.484

45000 12.609 13.093 12.895

50000 15.687 15.391 15.578

60000 22.219 22.391 22.437

75000 36.703 35.343 35.547

90000 50.703 51.109 52.969

100000 62.953 63.063 63.015

For computer features 1 of the empirical results it is seen that there are small differences in the tests 1,2,3

Finally, the average of the tests on these computers is calculated, which is the average of all tests:

Number of
elements Average time of

testing

10000 0.778

15000 1.653

25000 4.884

30000 6.783

45000 15.074

50000 19.285

60000 30.445

75000 49.068

90000 65.995

100000 82.925

ISSN 2601-8616 (print)
ISSN 2601-8624 (online)

European Journal of
Education

January-April 2020
Volume 3, Issue 1

46

3. QUICK SORT

The fast order has the complexity O (n log n) in the average case, while in the worst case the complexity of this algorithm
is O (n2).

In practice, quick sorting is significantly faster than other O complex (n log n) algorithms, because the algorithm's crossovers
can be applied efficiently in larger architectures, and in different data in practice , to make the design of elections that
minimize the probability of the need for quadratic time. The quick sort has enabled maximum utilization of the memory
hierarchy, creating great advantages in using virtual memory.

The Quick Sort works according to the divide and conquer method, dividing the list into the sublists. Lists with only one
element or with 0 elements do not need to be sorted.The quick sort is part of the group of comparative algorithms, which is
efficient but unstable.

The three most popular varieties of quick sort are: Balanced quicksort, External quicksort, and Multikey quicksort.

0,000

50,000

100,000

1
0

0
0

0

1
5

0
0

0

2
5

0
0

0

3
0

0
0

0

4
5

0
0

0

5
0

0
0

0

6
00

00

7
5

0
0

0

9
0

0
0

0

1
0

0
0

0
0

Ti
m

e
in

 s
ec

o
n

d
s

Number of elements

Average time of testing

ISSN 2601-8616 (print)
ISSN 2601-8624 (online)

European Journal of
Education

January-April 2020
Volume 3, Issue 1

47

Example:

3.1. Execution time

Quick Sort is a fast algorithm, faster compared to the previous methods, but is also quite complex and highly recursive.
Next we will do the execution time measurements for vectors filled with random number numbers. The execution time
measurements for the Quick Sort algorithm are performed on two computers.

Computer 1: Intel(R) Celeron (R) M CPU 530 @ 1.73 GHz, 768 MB of RAM After three tests we have the following results:

Number of
elements

Computer 1
Time in seconds

Test 1 Test 2 Test 3

10000 0.000 0.015 0.000

15000 0.015 0.000 0.015

25000 0.000 0.016 0.000

30000 0.016 0.000 0.016

45000 0.016 0.000 0.015

50000 0.015 0.016 0.016

60000 0.031 0.031 0.031

75000 0.031 0.031 0.032

90000 0.032 0.031 0.031

100000 0.031 0.032 0.031

For computer features 1 of the empirical results it is seen that there are small differences in the tests 1,2,3

0,000

0,020

0,040

1
0

0
0

0

3
0

0
0

0

6
0

0
0

0

1
0

0
0

0
0

T
im

e
in

 s
ec

o
n

d
s

Number of elements

Computer 1 tests

Te

s…

ISSN 2601-8616 (print)
ISSN 2601-8624 (online)

European Journal of
Education

January-April 2020
Volume 3, Issue 1

48

Computer 2: Intel (R) Pentium (R) 4 CPU 3.00 GHz, 3.00 GHz, 504 MB of RAM After three tests we have the following
results:

Number of
elements

Computer 2
Time in seconds

Test 1 Test 2 Test 3

10000 0.000 0.000 0.000

15000 0.016 0.000 0.015

25000 0.000 0.016 0.000

30000 0.015 0.000 0.016

45000 0.016 0.000 0.015

50000 0.016 0.016 0.016

60000 0.016 0.015 0.015

75000 0.016 0.032 0.032

90000 0.031 0.031 0.031

100000 0.032 0.032 0.031

For computer features 2 of the empirical results it is seen that there are small differences in the tests 1,2,3

Comparing the results achieved on these computers (above), the average of tests for each computer is derived, and then
compared to each other.

0,000

0,010

0,020

0,030

0,040

Ti
m

e
 i

n
 s

e
co

n
d

s

Number of elements

Computer 2 tests

Test 1

Test 2

Test 3

ISSN 2601-8616 (print)
ISSN 2601-8624 (online)

European Journal of
Education

January-April 2020
Volume 3, Issue 1

49

From the tables it is seen that for the same number of elements there are differences in execution time for different
computers due to the characteristics of the computers.

Finally, the average of the tests on these computers is calculated, which is the average of all tests:

Below is the average of the tests on these computers for one (bubble sort) and the other (quick sort):

Number of elements Average time of testing

10000 0.778

15000 1.653

25000 4.884

30000 6.783

45000 15.074

50000 19.285

60000 30.445

75000 49.068

90000 65.995

100000 82.925

Number elements Average time of testing

10000 0.005

15000 0.009

25000 0.009

30000 0.012

45000 0.014

50000 0.019

60000 0.026

75000 0.033

90000 0.033

100000 0.035

Bubble Sort Quick Sort

From the above tables it is seen that for the same number of elements there are major differences at the execution time for
different algorithms for sorting.

As seen, the quick sorting algorithm is much more advanced than the bubble algorithm.

4. CONCLUSION

Informally, an algorithm is any well-defined computational procedure that takes some value, or set of values, as input and
produces some value, or set of values, as output. An algorithm is thus a sequence of computational steps that transform
the input into the output. In general we used more techniques of algorithm design and analysis so that you can develop

